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We present a new state-space approach to construct a dynamic output feedback controller
which stabilizes a class of limear time invariant systems All the states of the given system are
not measurable and only the output is nsed to design the stabihizing control law In the design
scheme, however, we first assume that the given system can be stabilized by a feedback law
composed of the output and 1ts derrvatives of a certamn order Beginning with this assumption,
we systematically construct a dynamic system which removes the need of the derivatives The
main advantage of the proposed controller 1s regarding the controller order, which may be
smaller than that of conventional output feedback controller Using a simple numerical example,
1t 1s shown that the order of the proposed controlier 1s indeed smaller than that of reduced-order
observer based output feedback controller
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¥ 15 the measurable cutput in R?
1. Introduction We suppose that the system (I) 15 not able
to be stabilized by any static output feedback
In this paper, we consider the stabilization  {Syrmoset al, 1997) When the measurable states
probiem of a system represented by are not sufficient to design a stabihzing control
x=Ay+Bu law, & dynamic output feedback scheme with an
(1) additonal dynamic system e g state observer 1s
y=Cx designed so that the augmented closed loop sys-
where x 15 the state 1n R, 2 1s the mput n R™,  (em 15 stable (Kailath, [980, Chen, 1984, Shim
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our 1nterests to the stabilization problem, like the
static output feedback control problem, the order
of the controllers can be reduced {(Son et al,
2000, Son et al, 2002b)

While the measurable states are not sufficient
to design a stabilizing static control law, this
paper assumes that a static state feedback exists
for stabilization if the output and its derivatives
of a certain order are available to be used Then,
we present a new way to replace the required
derivatives by adding some dynamics 1n the feed-
back This 1s, 1n fact, inspired by (Son et al,
2002a), where a passtvity-based dynamic output
feedback control has been proposed for inherent-
ly non-passive LTI systems by virtue of paralie-
ling a feedforward compensator In (Son et al,
2002a), 1t has also been observed that, when a
system 1s stabilized by a proportional-derivative
control, the derivative term can be replaced™ with
a compensator which has the same dimension as
the system’s wmput The idea of replacing the
derivative term 1s further explotted 1n this paper
up to any order

The only assumption 1n this paper 1s the fol-
lowing

Assumption 1 Let us define

C
CA

Gr =K K K] and H, =

CA*
For the system (1), there exists an integer 7 (1<
¥} such that

A, =A+BG,Hy s Hurwitz

Remark 1 It 15 presumed wn this assumption that
¥ 21 because, when Assumption 1 holds with
#=0, the system (1) can be trivially stabilized by
a static output feedback without using additional
dynamics On the other hand, if the system {1) 1s
stabilizable and observable, then Assumption 1
triviatly holds with ¥ =#-—1 Indeed, 1n this case,

% The design of a dynamic system for replacing the veloc-
ity measurement has been studied by several authors
{(Kaufman et al, 1998, Kelly et al 1994, Fujisaki et al
2001 , Wong et al, 2001}
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Hy 15 left-imvertible due to observability, and
thus, there always exists G, with which Assump-
tion 1 holds

In the next section, a dynamic cutput feedback
controller 15 presented for system (1) under As-
sumption 1, followed by a recursive algorithm to
design the gains of the proposed controller 1 a
systematic manner Section 3 1llustrates a design
example with a simulation result Conclusions are
found 1n Section 4

Notations [, 15 an 1dentity matrix and Opxs&
R™* 15 a zero matrix

2. Main Results

For the system {1} satisfying Assumption 1, we
propose a dynamic output feedback controller of
oider p7, which has the form of

A=W+ WA AERY, u=0,v+ @i (2)

The output feedback stabilization problem 1s
solved if we find ¥F=[¥,; &) and 0=, Ds]
such that the following closed-loop system

x=Ax+B0.Cx+BD:A

(3)
A= WaCx + %A

15 exponentially stable

In the subsequent part of the paper, we propose
a new way to design the matrices ¥ and @
Therefore, the main contribution of the paper 1s
summarized as follows

Theorem 1 For the systern (1) satisfying As-
sumption 1, there exists 4 dynamic output feed-
back stabilizing controller (2} with additional
A-dynamics of order (pX#)

The 1dea of constructing the coniroller (2} 1s
to assume, temporarily i the beginning, that
Hyx is available for measurement This makes
the output feedback stabilization problem be
solved by the static gain found 1 Assumption !
Next, we change the temporary assumption such
that Hr..x 1s avarlable for measurement but Hyx
1snot (This implies that CA'x, 1=0,-- , ¥ —1, 15
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measurable but CA%x s not.) Then, the control
faw designed at the previous step, where we
assumed that H.x 15 measurable, 15 not imple-
mentable because 1t depends on the signal CA™x.
Hence, we separate the term CA"x from the
control law and design additional dynamics with
which the use of CA”x 15 eliminated. In the next
step, we proceed by assuming that Hr px 18
measurable but CAx 1s not. This recursion goes
to the end 1f we get a dynamic controller that
requires only the true measurement of Hyx= Cx
but not others

The recursion begins by the following mnitial
step

2.1 [Initial step

When the Hrx 1s measurable, we easily obtain
the following stable closed loop system S, with
the gam G, from Assumption |

wu=GeHox
- Gr—1Hr--1x +Kr ( CArX)
x=Amx=(A+BGH:) x
=Ax+BG,1\Hrx+BEACA'x)

Sr. (4)

MNow, we assume that fr_1x 15 available for mea-
surement but CA"x 1s not Then, by ntroducing
v, we decompose the system Sy mto the term
meluding CA™x and the rest {as follows):

u=Gr1Hrx + Ko (5a)
1=Ax+BG 1 Hrx+BKwv {5b}

If the followmng dynamic system 1s appended
to (5b)

A'= —~CA™ BG1Hr1x (63)
—(L+CA™'BK.)»
y=CA™'x+2A {6b)

then the augmented system (5b)-(6a) 15 stabiliz-
ed by v=Dry where [J; 1s chosen so that the
following matrix 1s Hurwitz

[ Ar "‘ATBKT :I
CA"™ —CA™BK,—~ D,

Proof of Initial Step
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First of all, note that

4 j=CAT 42
=CA™ Y Ax+BGaHrx+BEKv)
—(CA™'BGrHrox + CA™'BR 0+ v)
=CA™x—v

We now define

and change coordinates [x7 AT]17 into [£7 37]7
Then

SSArE_ATBKﬂj

_ _ 9)
y=CA"é—~CA"BK,y—v

Since the matrix A, 1s Hurwrtz, the system {9)
can be stabdized by v=D,y with an appropriate
gain Dy making the matnx (7) Hurwitz For
example, Dy=d.lp with sufficiently farge d,>>0
always performs this task. &

Consequently, we obtain the closed loop system
Sr-1 as follows

#=GroHrx + KD (CA™ 54+ 4)
={GrotF [Ompirv KeDo]) He H KDoA

& =Ax+BGrHyx T BICDACA™ 5+ 3) (10)
= A5+ BlGrt Oaeproy KD ) Brat ¥ BE DA

4 =~{I+CA™BK) D {CA™ x +A = CA™ BGr1Heix
== {CA™BG o1+ [Opxpirn M)} Homar— Mo

where M;=(I,+CA™BK,) D, The above sys-
tem (!0) 15 stable because its system matrix is
sumnifar to the matrix (7)

2.2 Recursive design of ontput feedback
controller
Wwe assume that, with some integer £ between
1 and 7, 1t holds that Hex 1s measurable and
the following output feedback controller of order
p(r—Fk) stabilizes system (1) exponentiaily .

A= gp-k,aHkx + lﬂ'k,bA

(1)
w= Qo+ Orpd

where @ro, Pup. The and ¥, are matrices of
appropriate dimension In other words, the clos-
ed-loop system
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Sk:{x=Ax+B(Dk.aHkx+B@k,bﬁ (12)

A= !p'k,aHkX"l' U wd

15 exponentially stable, which can be concisely
represented by

2= Az (13)

where z=[x7 AT]7 and the Hurwitz matrix A,

1s defined as

(14)

Ak:[A+Bwk,aHk B@k,b]

gp:k,aH F3 w..k,b

Now we postulate a new assumption that Hy_1x
1s measurable but CA®r is not, so that the
controller (11) cannot be mmplemented Thus, we
separate the term CA*®xr from the controller
equation (11) and replace 1t by a new signal v to
be designed as follows -

A= Wk,a;Hk-zx + Wk,bﬂ*F yfk,aZCAkx
=TarHeox+ qfk,b/l'l‘ gp‘k.azi‘/‘

U= OpoHioox+ Qp At Qo CA™
=@paHoxt QoA+ Cromavy

where wk,a”—_[wk,al wk.az] and @k,a:[@k,al (Dk.azl
Then, the closed-loop system 1s rewritten by

x=Ax+BOs o He1x+ B@y oA+ BDp e2v
/]': Wk,alHkulx + T pd+ wk,aZ?)

(15)

(16)

or
z=Fz+Lv (17)
where

F:[Aw@k,aﬂk_l B@k,b] LZ[B@,@}
wk,alHk—l Wb,b ’ qfk,az

which 1s equivalent to (12) (or to {13}) of p=
CA*x Note that Ap=F+L[CA* Opxpersi]

The following theorem provides a key to the
recursion in the sense that 1t shows how to replace
CA*x tetm by an additional dynamics

Theorem 1 Suppose that system (16) (or, (17)}
15 exponentially stable if v=CA*x, that is, the
matrix Ay 15 Hurwitz, If the following dynamic
system 18 appended to (16) (or, (17))}

p=—CA* BOpaHy 15— CA* B0 52 (18a)
—(L+ CA* ' BOyw) v, nER?
y=CA* 'x+7p (18b)

then the augmented system (16}, (18) (or, (17),
(18)) 1s exponentially stabihized by

v=Dy (19}
where the matrix [y 1s chosen such that

{ Ap — AL
[CA kOP)(p(r_k)] —CA* By a2— D

18 Hurwitz

J (20)

Remark 4 Note that the matrix {20) always can
be made Hurwitz by appropriate matrix D,
which can be found by LMI tool or by choosing
sufficiently large constant 4, >0 and letting D)=
s

Proof With the control law {18} and (19), the
closed-loop system 1s given by (17) and {18a)
with (19) In order to analyze its stability, the
closed-loop system 1s represented in the (z, ¥)-
coordinates instead of (z, »} That 15, the clos-
ed-loop system 1s now given by (17) and
A 5= CA (Ax+ BOyaH v+ BOwAt By a0)
- CA""‘B@;,,MHJ?,;JC - CAk—iB@k,bﬁ
*'(Ip“jr‘CAk—]Ba}h.a?) v
=CA*—y

Now we change the coordmnates (z, ¥) mnfo
(£, ¥) once again with a new variable £ =z=
Ly That s,

é=(Fz+Lv) +L{CA*x~v) = A
:Aké_AkLﬁ
y= [ CA*? ODXP(r—k)] zZ—y
=[CA* Opxptr-)E—~[ CA* Oppirmy | LG —v
= {CA# Opxp(r—kﬂ E—CA kB@k.aﬂj— 4
v=Dhy

4
di

Therefore, 1t 15 seen that 1f Dy 15 chosen such
that the matrix {20} s Hurwitz, the above clos-
ed-loop system 1s exponentially stable &

Remark 5. As a result of Theorem 3, 1t follows
that the overall closed-loop system, which 1s
obtained from (16), (18) and (19), is exponen-
tially stable The single equation (21) 15 the
closed-loop system, whose system matrix will
become the matrix Az 1n the next ileration step
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x A+BO, a1+ By D, CA*!
Al= U Hys+ oo Dy CA*?
3

B @k,b B q)k,asz X
P Wy 2D A (21

—CA*'BOraHi1— (T+ CAY B ) DiCA* — CAk_lB(Dk,b ~(I+CA*'BOuuw} D || »

The recursion procedure 1s now quite obvious
Since k=r at the mual step, &0, ¥rp and Oy
are null matrices (1 e, empty; and the controller
(18) becomes just a static feedback u=G.Hyx
(e, @.a=G,) from Assumption I Therefore,
we have the Hurwitz matrix A,=A+BG.H,
By Theorem 3, unmeasurable term CA7x 1s re-
placed by the dynamic controller {18) and (19)
Now, we regard the state 7 of (18) as the state A
of (11) {1e. {6) and (10)} for the next iteration
(The next step begins with the equation (11)) In
particular, from {10) 1t 1s obtamned that

Wyﬁl,a: - (CAT_ler,al“l“ [(}pxp(f—l) (Ip'i‘ CAr_lB[Dr,az) Dr])
brpp=— (Ip + CAr_lB{Dr,az) D,

Q)r-l,az d)r,al+ [Omxp(r—n a)r,azDr]

@r-l,b= @r,aZDr

where @r,q17=Groy and @rqe. Likewise, the itera-
tion proceeds untill we have a controller of (11)
with £#=0 Therefore, we obtain the gains of (2)
as follows

v,= %.a, g,= %,b, Qo=@ Op= @o,b

For convenience, we include a formula for the
1teration

_ Gt Opir-rnepta-y Traelh] ]
P [—CA*-‘BaJk.al—[opxm-n 1+ CA"B0, D) | 22
_ W ¥,Ds
wk—l,b_[_ CAkilek,b __ (Ip+ CAk_lB@k,aa) Dk:| (22[’))
Picre= Pt [Vuxpi—n OraaDil (22c)
Dp-1,0=[Prs PriczDs] (22d)

3. An Illustrative Example

We illustrate the proposed design method with
a simple numerical example

010 0

0
_loo1 0 0
“=looo 1 1o

1

100 —6
y=[(1000]x

(23)

For (23) we can see that the order of the pro-
posed controller {pX#) s less than that of the
reduced order observer based output feedback
controller {n—1}

The system (23) satisfies Assumption 1 with
#=2 Hence, the order of the proposed controller
15 two, while the reduced order observer based
controller has order three In fact, with the fol-
lowing control law

u=GeHox=[—6 —12 —13] Hax {(24)

the eigenvalues of the matrix A,=A+BG:H:
are given by {—230+;0625 —070%;0625}
Hence, the closed loop system (23) - (24) 15 stable
and we obtain (i=[—6 —12] and Ka=13 for
the iteration

Now, 1n order to replace the CAZ%x-term n
Hox as the mitial step, we consider the matrix of
(7) for the system {23) Indeed, with D;=20, the
matrix (7) 1s given by

0 1 O 0 0

0O ¢ o 1 13 (25)
—5 —12 —~13 —6 —78
0 0 1 0 —20

which 1s Hurwitz
However, since the CAx-term mm Hix 1s nei-
ther measurable, we proceed one step further by
Theorem 3 From the previous step and the equa-
tion (22), the parameters of {11} can be regarded
as
=0 —20], ¥ ,=-—20
(26}
@ro=[—6 —272], @1,,=—260

‘With these parameters the matrix A; in {14) 1s
given by

6 1 00 0
6 0 10 0
A=l0 0 01 0 (27)

—35 =272 0 —6 —260
0 —200 0 20
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Hence, the gain D; 15 chosen such that the matrix
in (20) 1s Hurwitz, which 15 achieved by Di=30

Therefore, with the following additional
dynamics
A=—600y —201—600
{ y 7 (28)
p=—30y—307%

623

the stabihizing control law for (23) 1s obtained by

u=—8166y—2604A—81607 (29)

Figure 1 shows the smulaton result {solid

curve) of the proposed controller. In the si-

mulation, we added a saturation (whose level 1s

--- State Feedback |
— Proposad

E14
State <xg> 1 o 5k
i
05
i o
0- s ISR e
~05
-0 5}
L . . -
Y 7 4 5 8 10 1
(a) State “xy’
i5 + T 3r
State <xg> 2
J 1
T | 0
[

10

25 ,7 State <xz>
-3 1] .
it
{--- State Feedback -5t - - - State Feedback 1‘
{ — Proposed 5 ) - P!opolsed
4 8 8 14 [¢ 2 4 8 8
{c) State “xy° {d) State ‘x/
2 - ; - -7 30 : .
State <)> 20 Control Input -
1 I
\ 10 1
o S N

7

~- - State Feedback

— Propussd (Saturated)

-20r /
—of Addironal States L’:}’
State <> ~301
% 2 4 ) 8 i 40 2

(e) Additional state

Fig. 1 Simulaiion Results (proposed solid)
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30) to (29) In the figure, we also compared the
plots with the results (dotted curve} obtained
from the state feedback control (24) We can see
that the additional dynamics successfully replace
the dervative terms CAx and CA%x m (24)
All the mtral conditions of the systems are
set to while all the minal states of the additional
dynamics are set to —1

4. Conclusion

In this paper, we have presented a new re-
cursive algorithm to design a dynamic output
feedback control law which stabrhizes linear
time-invariant systems If a given plant can be
stabilized by a static feedback of the output and
its derivatives, the proposed method systema-
ticatly constructs a dynamic system which suc-
cessfully replaces the output derrvative terms of
any order without any additional condittons A
numerical example with a simulation result has
been presented to illustrate the design method
From the proposed recurston algorithm, 1 1s not
difficult to develop an automated design package
on a PC
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